Python for Deep Learning: Build Neural Networks in Python

Python for Deep Learning: Build Neural Networks in Python

Python for Deep Learning: Build Neural Networks in Python

Complete Deep Learning Course to Master Data science, Tensorflow, Artificial Intelligence, and Neural Networks

Language: english

Note: 4.2/5 (660 notes) 84,843 students

Instructor(s): Meta Brains

Last update: 2022-01-09

What you’ll learn

  • Learn the fundamentals of the Deep Learning theory
  • Learn how to use Deep Learning in Python
  • Learn how to use different frameworks in Python to solve real-world problems using deep learning and artificial intelligence
  • Make predictions using linear regression, polynomial regression, and multivariate regression
  • Build artificial neural networks with Tensorflow and Keras

 

Requirements

  • Experience with the basics of coding in Python
  • Basic mathematical skills
  • Readiness, flexibility, and passion for learning

 

Description

Python is famed as one of the best programming languages for its flexibility. It works in almost all fields, from web development to developing financial applications. However, it’s no secret that Python’s best application is in deep learning and artificial intelligence tasks.

While Python makes deep learning easy, it will still be quite frustrating for someone with no knowledge of how machine learning works in the first place.

If you know the basics of Python and you have a drive for deep learning, this course is designed for you. This course will help you learn how to create programs that take data input and automate feature extraction, simplifying real-world tasks for humans.

There are hundreds of machine learning resources available on the internet. However, you’re at risk of learning unnecessary lessons if you don’t filter what you learn. While creating this course, we’ve helped with filtering to isolate the essential basics you’ll need in your deep learning journey.

It is a fundamentals course that’s great for both beginners and experts alike. If you’re on the lookout for a course that starts from the basics and works up to the advanced topics, this is the best course for you.

It only teaches what you need to get started in deep learning with no fluff. While this helps to keep the course pretty concise, it’s about everything you need to get started with the topic.

 

Who this course is for

  • Programmers who are looking to add deep learning to their skillset
  • Professional mathematicians willing to learn how to analyze data programmatically
  • Any Python programming enthusiast willing to add deep learning proficiency to their portfolio

 

Course content

  • Introduction to Deep Learning
    • What is a Deep Learning ?
    • Course Materials
    • Why is Deep Learning Important?
    • Software and Frameworks
  • Artificial Neural Networks (ANN)
    • Introduction
    • Anatomy and function of neurons
    • An introduction to the neural network
    • Architecture of a neural network
  • Propagation of information in ANNs
    • Feed-forward and Back Propagation Networks
    • Backpropagation In Neural Networks
    • Minimizing the cost function using backpropagation
  • Neural Network Architectures
    • Single layer perceptron (SLP) model
    • Radial Basis Network (RBN)
    • Multi-layer perceptron (MLP) Neural Network
    • Recurrent neural network (RNN)
    • Long Short-Term Memory (LSTM) networks
    • Hopfield neural network
    • Boltzmann Machine Neural Network
  • Activation Functions
    • What is the Activation Function?
    • Important Terminologies
    • The sigmoid function
    • Hyperbolic tangent function
    • Softmax function
    • Rectified Linear Unit (ReLU) function
    • Leaky Rectified Linear Unit function
  • Gradient Descent Algorithm
    • What is Gradient Decent?
    • What is Stochastic Gradient Decent?
    • Gradient Decent vs Stochastic Gradient Decent
  • Summary Overview of Neural Networks
    • How artificial neural networks work?
    • Advantages of Neural Networks
    • Disadvantages of Neural Networks
    • Applications of Neural Networks
  • Implementation of ANN in Python
    • Introduction
    • Exploring the dataset
    • Problem Statement
    • Data Pre-processing
    • Loading the dataset
    • Splitting the dataset into independent and dependent variables
    • Label encoding using scikit-learn
    • One-hot encoding using scikit-learn
    • Training and Test Sets: Splitting Data
    • Feature scaling
    • Building the Artificial Neural Network
    • Adding the input layer and the first hidden layer
    • Adding the next hidden layer
    • Adding the output layer
    • Compiling the artificial neural network
    • Fitting the ANN model to the training set
    • Predicting the test set results
  • Convolutional Neural Networks (CNN)
    • Introduction
    • Components of convolutional neural networks
    • Convolution Layer
    • Pooling Layer
    • Fully connected Layer
  • Implementation of CNN in Python
    • Dataset
    • Importing libraries
    • Building the CNN model
    • Accuracy of the model

 

Python for Deep Learning: Build Neural Networks in PythonPython for Deep Learning: Build Neural Networks in Python

Time remaining or 530 enrolls left

 

Don’t miss any coupons by joining our Telegram group 

Udemy Coupon Code 100% off | Udemy Free Course | Udemy offer | Course with certificate